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ABSTRACT

In many technical applications it is desired to fit a nonlinear model to
a set of observations. Several iterative techniques have been devised in order
to determine a best set of parameters in the least squares sense.

In this paper we discuss conditions for convergence, and give error
estimates for a class of methods, which includes as particular cases some
well known techniques. It is shown that those methods can be considered as
modified Newton's iterations for a suitable functional equation, and then a
general theorem, first indicated by Bartle, is proved and applied to this
particular case. The hypotheses are set in such a way that their checking by
an automatic computer is made possible.

Some numerical examples are given, The main aim is to show that the
automatic error estimation procedure works, rather than attempting to optimize

the computational scheme.




ITERATIVE METHODS FOR SOLVING NONLINEAR LEAST SQUARES PROBLEMS

Victor Pereyra

1. Introduction.

In many technical applications it is desired to fit a nonlinear model to a
set of observations. When the best fit is sought in the least squares sense the
problem can be stated as follows:

Given the nonlinear transformation F(x) =y between the finite dimensional

n m
Euclidean spaces E a_rEi E (n <m), and the vector of "observations'

be E" , find a vector 3{_* ¢ E' which minimizes the LZ—Il_O§_n_1__c>_f Fx) -b.

We consider in this paper a general class of iterative methods for finding
stationary points of || F(x) -bll g . Ifwecall f(x) =F(x) - b, these methods are of
of the form:

iz ) i(x) (v=0,1,...), (L1

. no, .
where the T are linear, nonsingular transformations of E= in itself, and
-V

[£'] T is the transpose of the Jacobian matrix of the transformation f . In
components
T m 3f,
i
1 =
[£(x) "£(x)], Lose i

i=l j
By choosing T  appropriately we can obtain some well known methods
-V

used in the solution of nonlinear least squares problems. For instance, if
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T
=fi(x ) ff (iv) then the resulting iteration corresponds to the Gauss-Newton

v v

method ( see Moore and Zeigler [ 7] or Hartley [ 4] and references therein).

If lv =i"(50) Tf(ﬁo) for all v, then we could call this the simplified
Gauss-Newton method. In general, schemes like those of Powell [9], and
Jakovlev [ 5], which replace i’(iv) T_f’(giv) by approximate expressions could
be considered into the class of methods described by (1.1).

Sufficient conditions for the convergence of the Gauss-Newton method
were obtained in Zadunaisky and Pereyra [ l1] by applying a standard fixed point
theorem,

Observing that to find the stationary points of “ ( x)” ; is equivalent to
finding the zeros of its gradient, the problem is reduced to the solution of the

nXn system of nonlinear equations

¢ (x) =i'(z<_)Ti( ) =0 . (1. 2)

If we now regard the iteration (l.1) as a method for solving (1. 2) then a
general theorem by Bartle [1] can be applied in order to obtain sufficient conditions
for convergence, and error bounds for the successive approximations. We include
a proof of this theorem since in Bartle's paper it is only vaguely indicated.

Considering the solution of overdetermined systems of nonlinear equations
of the form f(x) 20, f: - Em, Ben-Israel [ 2],[ 3] has studied the conver-
gence of generalized versions of Newton's method and the simplified ( or modified)
Newton method. The generalizations consist in replacing the inverses of the
Jacobian matrix of f(x) , which appear in the standard nonsingular nX n case,
by their pseudoinverses. This in particular permits considerations of the case

in which rank f'(x) <n.
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In this paper we will only be concerned with the case of full rank ( =n).

Since in that case
[f(x) T_f_'(gc_) ]_li'(g)T = pseudoinverse of f'(x) = [{(x) ]+, (1.3)

we see that the Gauss-Newton method coincides with Ben-Israel's generalized
Newton-Raphson's method.

The conditions obtained from Bartle's theorem for the general iteration (1. 1)
are specialized to the Gauss-Newton method in Theorem 4.1, and the representation
(1. 3) for the pseudoinverse of f'(x) allows us to give an error estimation pro-
cedure which can be implemented on a digital computer. Ben-Israel's theorem and
our result do not seem to be comparable. On one side we require conditions on
the second derivatives of the function f(x) while he does not. On the other hand
we require only the boundedness of || [j'(io) Tﬁ(zgo)rl“ while he uses the
condition || [f'(x) ]‘f - [ (y)] +H < N| x-yll which is obviously more difficult
to verify.

An implementation of the error estimation procedure is briefly explained

in Section 5. Finally we present in Section 6 two numerical examples.
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2. Approximate Newton type iteration.

As we said in the Introduction, the problem of finding the stationary values
2
of Hf_( x) - EHZ is equivalent to that of finding the solutions of the nX n system

of nonlinear equations:
. T
olx) =f(x) Hx) =0 (2.1)

where f(x) =F(x) -b, and f'(x) 1is its Jacobian matrix. If we put i’(i)T_f_’(gg)E
N(x) and assume that f(x) is twice Fréchet differentiable in a certain region

Qc En, then the Fréchet derivative (Jacobian) of ¢(x) can be written as
1 — i T i
¢'(x) = N(x) +[f(x) ] f(x) . (2.2)

This is easily obtained by applying the operational calculus with Fréchet deriva-
tives (cf. Dieudonné [12]).

In the benefit of those readers not familiar with this calculus we will obtain
this formula by operating on the components of the vector functions involved. We

will use tensor notation with the summation convention. On the first place

of.
-t
2(—) Tox. i
]
and
5 Bfi afi of . 82f.
i i
o' (X) =7z—(5—1£) = £ .
= 9 0
8xk XJ' i BXJ_ x]< 8xk8xj i

Thus, going back to the matrix notation we obtain ( 2. 2).

The standard Newton-Kantorovich method for solving ( 2.1) is:

5v+1=5f[ﬁ"§v>]'lz(z<_v).- (2.3)
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and the approximate Newton iteration ( see Bartle [1]) is obtained if —(&i(iv) is
replaced by linear, nonsingular operators lv which are close to 2‘(3{_0) in
some sense. But this is essentially what is stated in equation (1.1). Thus we
can apply Bartle's theorem to that iteration obtaining sufficient conditions for its
convergence. We can write those conditions in the following form:

n
Theorem 2.1. Let Iv be a sequence of linear nonsingular operators from E

into itself, such that, for x e E' and p>0 the sphere S(x,,p) C %,

(a) Izl <n,
(0) Iz, -oxll <e,
(c) i x,ye S(x,,p) then
l‘g(ﬁ)—g;(_}/_)—g‘(§o) (x-yll <pllx -yl ,
(@) letx)l <n,
(e) k=AMB+e) <1, r=il<p,

Under these conditions the iteration (1.1) is well defined and converges

to a solution _:g f _<p_( ) =0. Furthermore, H g\ - 50” <r and is the only

solution contained in this sphere. The rapidity of the convergence is given by

Ix"-x | <x’r .
x-x |l <

Proof: First of all from (1.1), (a),and (d) it follows that

|\§1—50||jkllg(zo)llixnip- (2.4)

Furthermore, by (1.1), (b),and (c)
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Fetxpll = lo(x) - elx) —_T_o(_>gl~§o)\l <

Sletx) -elx ) - x)x-x )l + =) -T ) (x-x )l <

o= -x 0. (2.5)

With formulas ( 2. 4) and ( 2. 5) we have started an induction argument.

Assume that, for v =1,...,n
(i) lx -x/0<e,
(i) lx -x I <xetx I,
(i) el <e+alx -x I

From (1.1) and (a) we obtain

(ii_,) bz -x b <allecx )l

and by (i ), (i), (ii ),...

Iz L -x b <sxp+ealx -x 5...§[>\(5+e)]v\|§l—§oll<kvll§l—3<_Ol|.

v+l —v-1

Furthermore

||§n -x || Z HX ~X ll 2 k" Hx -x H <p

).

which is | 14

Having proved this we can use (c) on

lotx Pl =llelx )-olx)-T (x -x )l <
<letx ,p-olx )-e(x)x -x )l +
tlex ) - M= -x ol <+ ollx , -x |
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thus obtaining (iii ) which completes the induction argument.

n+l

‘With this we can establish that the sequence {iv} generated by (1.1)
is @ Cauchy sequence and simultaneously we can obtain the error estimation.
In fact, forany p~>0

N
x| < i e <MK v
ll§v+p x ” I ZyrimEpqio l k Z k “X 5OIl - 1-k koo

Consequently, there exists i:,: € 8(50 ,T) such that Z<_V - x*, and

furthermore
Hx*—x H <x'r .
L
If {* is another solution of ¢(x) =0 satisfying Hi**—iou <p we
can write
Slesic _ sk - - sk _ B < st _ P _ >,::,:_ B <
hx " -x =z tz (7 -l <M letx ) -elx) -2 (x -x)l <
SRR Fary I Fasry
which is impossible unless 5:‘:* = 57‘:
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3. Another set of sufficient conditions.

Sometimes it is computationally advantageous to replace hypothesis ( ¢)
in Theorem 2.1 by other conditions which, though giving a slightly less general
result, are more easy to handle.

Lemma 3.1. Suppose that v, K2 > 0 exist such that

(c) 1|_[£'(§)T]'_f(z<_) - [_f_'(go)T]'_f(;_O)H 2V, xeS(xg,p),

(c,) ANl <k, xes(x,,e,

are satisfied, then (c) follows with g = sz + Y .

Proof: We will first calculate a bound for Hg’(ﬁ) - ¢f (5_0)1‘ , X S(iO , P). By

( 2. 2) and the hypotheses
lo'(x) - o (x ) <IN(x) —1_\T_(§O)H+H[i‘(3<_)T]'i(5)—[i'(ng)T]'_f(io)H <
<k lx-x l+veake+y.
If we call sz + ¥ =p then by Bartlefs Lemma 1:

lo(x)-oly) - (x ) (x-v) I <pllx-yl
0

which is (c).
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4. The Gauss-Newton method.

By taking lv = l}I_(z{_v) in (1.1) we obtain the well known Gauss-Newton
method for solving nonlinear least squares problems. We will express now the
conditions (a) and (b) of Theorem 2.1 in terms of some of the quantities used in

Section 3. If (Cl) and (c2) hold then

I Ge) 1 22 )l < (4.1)

implies condition (b) of Theorem 2.1 with ¢ =p. This follows easily from

= - <
iKZP'*’Y B, (“_>§_v iH_p).

We want to show now that the existence and uniform boundedness of
N( x) -1 (X e §(_>§0, p)) 1is a consequence of the existence and boundedness of
11(_}_{_0)_1. To do so we will state without proof a well known result of the theory
of matrices:

Lemma 4.1. Let B and C be nXn matrices. Assume that

— — —

h

(i) B is nonsingular and “B_— l <aj;
(ii) llc - Bl <s&;
(iii) @8 <1,
then C is nonsingular and
I < & (4.2)
= —1-a8 ° :

From this we can prove the following:
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Lemma 4. 2. If

(a)  N(x,) isnonsingularand || Mzgo)_l“ < then N(%)7(xe 5(x ) P)

1 2

exists and || N( _>_<:_)_1H <A\.

Proof: Take in Lemma 4.1

), g=11(3<_), a=l)\ and 6 =K

B=N(x > o P -

0

Since ab =’%K2p we have by (3.1) that b <Zl' and thus N(x) is nonsingular.

Furthermore

Collecting these results together we can state the following theorem,

Theorem 4. 3. With the same notation as above and for Xy € @2, let us assume that

(0 ] fx) - (£ x Y ax )l <y, xeS(x.,p) C@, (4.3)
0 0 0

Inoll <k,,  xeS(x,,0), (4.4)

Mg ) T fx )l < v, (4.5

and that N_(io) is nonsingular., Define

r=zlinex )7l (4.6)
and assume that k = 2)\( sz +y) <1l. Define
o <r=xlglx )/ [1-2x(X,p+ V)] . (4.7)
Assume further that r < p, then the sequence {?iv} defined by
-1
= - 4.8
vl T2y N-(-}iv) -(’2-(-}51:) ( )
converges to the unique solution x* of ¢(x) =0 in the sphere S(zc_o,r) .
Moreover, the rate of convergence is estimated by
lx*-x I <K'r. (4.9)
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5. Automatic error estimation.

A Fortran 63 program has been written for the CDC 1604 computer at the
University of Wisconsin Computing Center, which implements the Gauss-Newton
method with the error estimation procedure given in Theorem 4. 3.

The hypotheses are checked automatically as the iteration proceeds, and
as soon as they are satisfied it can be ensured that the process converges and
the bound (4.9) used to estimate the norm of the error.

As seen in step V of the procedure described below, a relaxation technique
is used in order to prevent divergence in the earlier stages of the iteration
(cf. Hartley [4]).

An interesting feature is the use of interval arithmetic (cf. Moore [ 6]

Reiter [ 10]) to compute y and K2 in Theorem 4. 3. Given the region £

as an n-dimensional hypercube Z(g, p) with edge 2p and center _:é we compute
(4. 3) and (4.4) in interval arithmetic with the argument X = (;i -p, ;i + p)

and from there we can obtain y and KZ immediately.

A further sophistication would be to use a program to generate the code
for the partial derivatives which are needed in the discussion. We have not done
this since our test cases were very simple, but such a program is available
( Reiter {10]) and it has been successfully applied to the solution of some
complicated systems of nonlinear equations by Newton's method.

We will briefly describe now the computational scheme. We use in this
description informal Algol. For details on the Algorithmic Language Algol, cf.
Naur [ 8] .

The notation is the same as in Section 4. The norm used is the Loc norm
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2
except for the residual H f”z where, of course, we use the L

Let _>§_O and p be given.

begin procedure error;

. = o | -1y,
Iag =2 INx )7 s
if N(_)_\'.O) is singular then go to error 1;

I Ax = N(x )_li'(io)T_f(ﬁo); pi=p s

ne Y=o omax (N0 P H) - (20 ) Ax ) s

Vel TR

~

v02=ma><(v,v);

Iv: if 2y0>\0 <1 then go to Rest of error procedure else

p 3= O.l;;g p > XOH_@(_{O)“ then go to III;

V: comment this is the relaxation routine;

for i: =0 step 1 until p do begin

comment p Is a given integer;
X, =X Z—i A X
=1 =0 =0’

T N ,
if h_f(il)\\z “_f(ﬁo)!‘z then begin

:=§i; goto I end end;

%0

Rest of error procedure: K2 o= max ( H li!(i)“') :
Xe Z(x,,p)

k:=2)\(K2p+yO);

_12-
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norm.
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VI:

xilg(zo)\l
1-k ;

if k <1 then begin RO o=
if R0>p then go to V;

In{r) - In (¢)
In( 2)

r::RO;q:::[ ] +1;

comment ¢ is the desired accuracy;

for i:=0 step 1 until g do

- N.‘i-)—l_f'(zsi)T_i(zsi) end

error 1: end.

#622
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6. Test cases.
The following test cases have been run on the CDC 1604:
x.t
i

1) Fi(xl,xz,x3) =g(ti,3<_) =x2e +x3,

10<m<20, | ti‘ 10, v, taken from tables with different accuracies

(for given x™).

t,
Sample results are given in Table 1 for yi =0.1le 1 5 truncated at the

fifth significant figure; m = 10,

-2 < ti <2.5.
The conditions were usually fulfilled when the iterates were quite close

to the exact solution.

= i t
2) g(ti,xl,xz,x?)) X, sm(xl i) + x

3

Taking y, = sin t to 3D for t = (0.105, 0.25, 0.4, 0.55, 0.7, 0.9,
1.1, 1. 25, 1.35, 1.45, 1.55, 1.57, 1.6), m =13, We have obtained the results
shown in Table 2.

In the second example we see that before the 3rd iteration the condition
k <1 is not fulfilled. Then 2\y becomes less than one and simultaneously
k <1 is also fulfilled. Thus r can be calculated and it comes tobe < p. The
error estimations are then read in the corresponding column. In this example we
have, instead of using the second part of VI, chosen to proceed as if every
iteration were the first, since in this way the error estimation is much better
than the one obtained directly from the theorem. Thus, in the 4th iteration we
have two error estimations: 7.9 X 10_5 obtained by considering the third iterate
and 3.5X lO_lO if we recompute everything anew. For the 5th iterate

as X,
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we give in parentheses the error estimation obtained if the 4th iterate is taken
as X,.

The disparity showed by these estimations stem from the fact that in this
case the convergence is faster than linear since “_f(ﬁ*)”i itself is quite small.
This does not have to be the case in more real problems in which the model cannot
be expected to reproduce the observations very accurately.

The conclusion we can draw from these and other experiments we have
carried out is that the most difficult part in this error procedure is the choice of
an appropriate p.

Also it is clear that in its present form the conditions are fulfilled only
when we are quite close to the exact solution. On the other hand, we see from
the definition of r that this quantity can be obtained with very little effort if k
is ignored and, from a practical point of view, small values of r could be enough
assurance of convergence, and they could be used as error estimators without any
further check. In this case the only extra computation would be that of the

step 1 of the error procedure.
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